BCI Innovation at the Intersection of Restoration, Augmentation, and Intelligent Systems

Mike Wolmetz, Program Manager Human and Machine Intelligence

Clara Scholl, Chief Scientist Neuroscience Group

Anne-Marie Brouwer, Senior Research Scientist Human Performance Group

Judith Dijk, Senior Research Scientist Intelligent Imaging Group

TNO at Soesterberg: Defence, Safety & Security – Human Factors

VRLAB

GAMING LAB

CLIMATE ROOMS

TELEPRESENCE LAB

AUDIOHALL

PHYSIOLOGY LAB

DESDEMONA

стс

DRIVING SIM

A Brief History of TNO BCI Research

BCI in the lab

Out-of-the-lab *mental state monitoring* for augmentation

JHU/APL in Laurel, MD

Nation's largest University Affiliated Research Center (UARC)

Create *defining innovations* that ensure our nation's preeminence in the 21st century

LISSI

. . .

A REAL PROPERTY.

A Brief History of JHU/APL BCI Research

Anthropomorphic Perception & Control

Beyond Anthropomorphic Perception & Control

Human–Al Partnership

Next Generation Non-Invasive Interfaces

BCI Innovation at the Intersection of Restoration, Augmentation, and Intelligent Systems

Motivation

	2030 20	040 2050
BCI tool	Near-term capabilities	Long-term capabilities
 Human-machine decisionmaking 	 Immediate transfer of operational risk Faster decisions to deploy weapons Shorter preparation cycle with faster feedback from occurrences in battlespace (collapse OODA loop) Increased speed and accuracy of targeting 	 Transfer of risk and threats (increased bandwidth) Augmented AI systems
 Human-machine direct system contro 	 Transfer basic commands to systems Increase situational awareness and reaction Collapse OODA loop 	 Transfer of complex manipulations (increased bandwidth and degrees of freedom) Resistance to distraction (use in dynamic environments) More specific commands and control
 Human-to-human communication/ management 	 Transfer basic commands between individuals Reduce (radio) weight 	 Transfer complex strategies involving commanders/headquarters (increased bandwidth)
 Monitor performance 	 Monitor state Monitor individual and group cognitive workload, stress, breaking point 	 Long-distance standoff assessment Monitoring of adversary emotional and cognitive states Archived dynamic cognitive profiles
5) Enhance cognitive performance	 Regulate emotional state (i.e., stress) Increase focus and alertness 	Modulate emotional state
 Enhance physical performance 	 Improved strength augmentation Improved sensory capabilities 	 Implanted auto pharmaceutical distribution Pain disruption
7) Training	 Increased learning retention Deployable training devices Adaptive individualized training More immediate and effective assessment 	 Implanted knowledge sets

RAND Report – Release 27 August 2020

"Overall, our findings suggest that as the U.S. military increasingly incorporates artificial intelligence (AI) and semiautonomous systems into its operations, BCI could offer an important means to expand and improve human-machine teaming."

Objective

Brain-Computer Interface (BCI) Research and Development (R&D) is regularly segregated by application:

- One set of labs and studies focused on BCI for restoration of lost function for clinical population
- Often distinct labs and studies focused on BCI to augment the performance of healthy individuals

Explore and outline how BCI innovation is now at the intersection of these two targets, and how intelligent systems R&D is critical to both.

- 1. Anthropomorphic and non-anthropomorphic BCI
- 2. Invasive and non-invasive neurotechnologies
- 3. Active and passive BCI: From intentional control to monitoring
- 4. Peripheral measures
- 5. Neural multiplexing
- 6. Integration with intelligent systems

Anthropomorphic Perception & Control

Two recording electrode arrays in the hand area of the left motor cortex (which controls the dominant right hand) and one in the right.

Two stimulating electrode arrays in the hand area of the left sensory cortex and one in the right.

Beyond Anthropomorphic Perception & Control

Perception

Control

Invasive and non-invasive neurotechnologies

Invasive and non-invasive neurotechnologies

Active and passive BCI: From intentional control to monitoring

Dehais et al.

Peripheral measures

Peripheral measures

Facebook / CTRL-Labs

Neural multiplexing

Using the brain's natural mode of operation with the senses and muscles at the same time as a neural interface

Integration with intelligent systems

Integration with intelligent systems

AI-BCI Shared Control

AI-BCI Shared Perception

Summary and Conclusions: restoration and augmentation

Invasive research will provide critical glimpses of the future of non-invasive capabilities

Passive techniques will increase Information Transfer Rate to enable active BCI for augmentation

Research focused on anthropomorphic and non-anthropomorphic perception, control, and embodiment will improve **restoration** and **augmentation** use cases, from **prosthetics** to **teleoperation**

Neural multiplexing is a prerequisite for BCI in more moderate impairments and in most augmentation use cases

Peripheral measures will supplement or complement neural measures and provide critical contextual information across **restoration** and **augmentation**

Al-enabled BCI offers new modes of human-machine teaming and helps to overcome limitations in recording and decoding neural signals across **restoration** and **augmentation**

Estimates of historical status (blocks) and recent trends (arrow) for BCI across restoration and augmentation

